
Optimizing Builds

1

● Create a Google3 client using CitC, Piper, or Fig.

● Use Blaze to build and test targets with Google3.

● Edit BUILD targets and rules.

Need a review? Do build codelabs (go/build-codelab).

You should already know how to:

2

75K changelists a day

2.3M packages

15M builds/tests a day

4.2B lines of code

3

Three principles of
build optimization

4

Build small
Design for reuse
Use automation

5

You
work
faster

Your
users
save
time

Build small

6

Build efficientlyDesign for
efficiency

Use less
resources

7

Use
automationDo less work

8

Optimizing builds will
enable your team and
your users to do great
work efficiently.

Module 1
Dependencies: Who depends on
yours?

List

9

Dependency bloat is
the biggest build
performance issue in
Google3.

10

11

Long dependency chains are wasteful

Dependency chain level

% deps
used

Only 33% used

12

2018

Only 10% of
dependencies used

Why does it matter?

13

analyze and rebuild

fix broken code

migrate

see your deps grow

You and your users mustIf dependencies'

code changes

code breaks

API changes

dependencies grow

Even if you don't
use them!

Common sources: infrastructure libraries

 import com.google.bigtable

 java_library(
 name = "spanner",
 srcs = glob(["*.java"]),
 deps = [

"//…jsr330_inject",
":api",
":errors",
"//java/com/…common/collect",
"//third_party/java/flogger",

],

)
source file imports

build rule targets

15

Who do you depend
on?
Who depends on
you?

Identify your dependencies

blaze query 'deps(//java/com/google/spanner:api)'

Returns everything
from spanner:api

go/blaze-query

Narrow your results

17

go/blaze-query

blaze query 'deps(//java/com/google/spanner:api)'

blaze query --nohost_deps --noimplicit_deps 'kind("rule",
deps(//java/com/google/spanner:api))'

go/blaze-query

Returns just rules, no host
config or implicit deps

Find dependencies between targets

$ blaze query "somepath(//foo:foo, //third_party/zlib:zlibonly)"

$ blaze query "allpaths(//foo:foo, //third_party/zlib:zlibonly)"

'allpaths()' find deps for
all paths. go/blaze-query

'somepath()' finds
deps for one path.

Work on a library? Who depends on you?

//your:library

GWS

Maps for
Android

FIrebase

blaze query rdeps()

//your:target

blaze query 'rdeps(<universe>, <your target>, depth)'

//target/of/query

Level of the
reverse dep chain.

rdeps() example

21

go/blaze-query

 blaze query --nohost_deps

 'rdeps(//google/android/apps/play/movies, //wireless/android/tv/common, 3)'

…that depend on this
target.

Evaluate all the deps
in this target…

Blaze query can't do it all

//your:targetBlaze query

GWS

Maps for
Android

FIrebase

//your:target

GWS

Maps for
Android

FIrebase

Depserver can query all google3

Depserver

Depserver for evaluating it all

blaze run -c opt //devtools/deps/depserver/query:depends_on.sh
//your:library

24

go/depserver-overview

Prints all targets that
depend on your library

Diagnose and fix a bloated dependency

//java/com/google/spanner:api

Target

//java/com/google/common/html:html

depends on its dependencyLibrary for generating
and parsing HTML

Why do we depend on that?

blaze query --noimplicit_deps --nohost_deps
'somepath(//java/com/google/spanner:api,
 //java/com/google/common/html:html)'

 //java/com/google/spanner:api

 //java/com/google/net/rpc3:rpc3

 //java/com/google/net/rpc/contrib/rpcinjectz2:client

 //java/com/google/net/rpc3:rpc3_noloas_internal

 //java/com/google/common/html:html

…and returns this
dependency chain

Finds one route
between targets…

//java/com/google/spanner:api
//java/com/google/net/rpc3:rpc3
//java/com/google/net/rpc/contrib/rpcinjectz2:client
//java/com/google/net/rpc3:rpc3_noloas_internal
//java/com/google/common/html:html

Why do we depend on that?

blaze query --noimplicit_deps --nohost_deps
'somepath(//java/com/google/spanner:api,
 //java/com/google/common/html:html)'

service.proto

Dependency
comes from rpc3

Take a look at the rule
java_library(
 name = "rpc3_noloas_internal",
 srcs = glob(
 [
 "*.java",
 "client/*.java",
 "client/loadbalancer/*.java",
 "client/util/*.java",
 "server/*.java",
 "stream/*.java",
 "impl/*.java",
 "impl/client/*.java",
 "impl/server/*.java",
 "impl/server/plugin/*.java",
 … more…
],

"
28

Globbing a lot of
sources

Find what deps are being used

rpc3$ grep -r com.google.common.html *.java

BUILD: "//java/com/google/common/html",
examples/HttpServerSupport.java:import static
com.google.common.html.HtmlEscapers.htmlEscaper;

"

29

Just this?

Narrow the dependency

Most users should depend on :html.

java_library(name="html", ...)

Targets for HtmlEscapers only, to avoid i18n identifiers and ICU4J.
java_library(name = "htmlescapers, ...)

30

Use html:htmlescapers
instead of html:html

java/com/google/common/html/BUILD

Learn more about build health

● Use blaze query to identify dependencies.
● Identify targets that depend on your target with rdeps().
● Identify reverse dependency depot-wide.
● Fix a bloated dependency by finding underused deps.

31

Things you can do:

