
Build Your First AppExchange App Workbook
Welcome to Build Your First AppExchange App! This workbook is designed to take you and other ISV partners through
the process of creating a simple app on the Salesforce platform, packaging the solution, and making it available for
distribution.

Part 1 | Create a Developer Edition Org and Define
a Namespace
In this project, we will work together to use different Salesforce technologies to build a fully functioning Property
Management app. Our goal is to give you, our Independent Software Vendor partner, a fundamental introduction to
AppExchange app development.

By the time you have finished completing all parts of this workbook, you will have created a custom table to store
records pertinent to property management, a custom user interface to show the properties on a map, a simple wizard
to book property maintenance and a report visualizing the number of properties owned by each landlord. What’s more,
all of this will be packageable and installable into customer instances of Salesforce.

This workbook will use 2nd Generation Managed Packaging, which will help you better organize your source code,
integrate with your version control system, and improve utilization of your custom Apex code. To learn more about 2nd
Generation Packaging, take a look at the Salesforce DX Developer Guide here .

Create a Developer Edition Org

In this first section, we’ll use the Environment Hub within your Partner Business Org (PBO) to create a Partner Developer
Edition org. The Environment Hub lets you connect, create, view, and log in to Salesforce orgs from one location. If
your company has multiple environments for development, testing, and trials, the Environment Hub lets you streamline
your approach to org management.

To create a Partner Developer Edition org and assign a unique namespace, log into your Partner Business
Organization (PBO).

Open the App Launcher.

Find and select “Environment Hub.“ You can do this by typing “Environment Hub” into the search box and
clicking on it when it appears (see Figure 1.1). Or you can scroll down and find the Environment Hub link at the
bottom of the App Launcher page.

1.

2.

3.

https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp.htm

Figure 1.1: After you open the App Launcher, type “Environment Hub” into the search box and then click the
Environment Hub hyperlink.

In the upper right corner of the Environment Hub tab, select Create Org.

Fill out the Create Org form as shown in Figure 1.2. The My Domain name must be unique among all Salesforce
domains. Because this is an example project, choose a My Domain name you won’t need again; don’t use a name
that you might use for a real app that you plan to develop. I’ve chosen Workbook001.

4.

5.

Note: Your user name must be in the form of a unique email address that you have not used to sign-up for other
Salesforce accounts. It does not need to be a real email address.

Figure 1.2: Enter all the fields in the Create Org form. The My Domain name must be unique, so choose one that you
do not plan to use again.

After you have completed the Create Org form, click the Create button. Wait patiently while our infrastructure
provisions your very own Partner Developer Edition org. When your org is ready, you will receive an email
message that will look similar to the one in Figure 1.3.

Click the Verify Account button.

6.

7.

Figure 1.3: When your Partner Developer Edition org is ready, you will receive an email message asking you to verify
your account.

8. A screen will appear asking you to change your password. Enter and confirm a new password and set up a security
question. When you have logged in, the Setup Home screen will appear.

9. In the Quick Find box on the left corner of the screen, enter “Package Manager.” When you see Package Manager
appear in the list below the Quick Find box , select it. The Setup Package Manager box will appear (Figure 1.4).

Figure 1.4: The Setup Package Manager screen.

10. Click the Edit button in the Developer Settings section.

11. In the Change Developer Settings screen, click the Continue button.

Enter a unique name to register a namespace prefix. The namespace prefix needs to be unique and can never be
changed, modified or removed. Click the Check Availability button to see if the name you entered is not already in use.

12. From the Package to be managed drop down menu, select the package you created in the previous steps. Click the
Review My Selections button.

13. Review the Namespace Prefix and the Package to be managed. If both are correct, click the Save button to return
to the Setup Package Manager screen in your Partner Business org.

Set-up My Domain

My Domain enables you to create your own subdomain for your Salesforce org. With a subdomain, you can include
your company name in your URL, for example: https://yourcompanyname.my.salesforce.com.

Note: You set up My Domain in your Partner Business Org, not in the packaging org.

My Domain enables you to:

Redirect to your single sign-on provider

Use SAML Identity Provider to single sign-on to all your apps

Work in multiple Salesforce orgs at the same time

Customize your login screen

●

●

●

●

There are four simple steps to set up My Domain.

Step 1: Register a Subdomain

The first step is to pick and register your subdomain name:

Click the Setup cog in the upper right corner of your Partner Business Org.

Enter “My Domain” in the Quick Find box. When My Domain link appears, click on it.

In Step 1 of the Setup My Domain screen, enter the name of your subdomain. The sub-domain name must be
unique across all Salesforce orgs, so you will need to be creative when choosing a name. Click the Check
Availability button to find out if your sub-domain name is already taken.

If the name is available, click Register Domain.

1.

2.

3.

4.

Step 2: Receive Email Domain Registration Confirmation

After a few minutes, you’ll receive an email letting you know that your subdomain is ready for testing. Click the link in
the email to login into My Domain. If you still have your org open, click Setup, find My Domain, and click on it.

Step 3: Verify that the Domain is Ready

When your domain is ready, you’ll see the URL in your browser’s address bar and at the bottom of the My Domain
Setup page. If the URL looks good, click the Log In button.

Step 4: Deploy to Users

Click the Deploy to Users button. Now, all of your users can see the subdomain.
Note: Don’t forget to do this step. Your users can’t access the org with the subdomain URLs until you deploy it.

Register the Namespace

Now that you have setup a My Domain subdomain, you can register the namespace.

Return to your Partner Business Org. Open the App Launcher and in the search box at the top of the screen enter
“Namespace Registries.”

In the upper right corner of the Namespace Registries page, select the “Link Namespace” button.

Enter the credentials for the Partner Developer Edition which you just created. Choose “Allow” in the prompt
which appears (Figure 1.5).

1.

2.

3.

Figure 1.5: Click the Allow button to enable the namespace to appear in the namespace registries.

Once done, your newly defined namespace will appear in your list of namespace registries. This allows us to create
namespaced scratch orgs, something which will be extremely beneficial for our package development!

Enable Unlocked and Second-Generation Managed Packaging

Enable packaging in your org so you can develop second-generation managed packages. You can work with the
packages in scratch orgs, sandbox orgs, and target subscriber orgs.

Enable Dev Hub in your org.

Log in to the org where you’ve enabled Dev Hub.

From Setup, enter Dev Hub in the Quick Find box and select Dev Hub.

In the section for Second-Generation Packaging, click Non-GA Service Agreement to read the service agreement.

Click Enable Unlocked Packages and Second-Generation Managed Packages. After you enable Second-
Generation Packaging, you can’t disable it.

1.

2.

3.

4.

Part 2 | Create a Salesforce DX Project and a
Scratch Org
Salesforce DX enables you to set up a project structure for your org’s metadata, your org templates, your sample data,
and all Apex Unit tests and Jest tests. You can manage these items in your preferred version control system (VCS) to
maintain project integrity, particularly when you’re ready to add new features to your app.

In this tutorial, we’ll use the Command Line Interface (CLI), Salesforce Extension Pack, and Visual Studio Code to create
a project. Then we will authenticate the project against our Partner Business Org, which is where you’ve enabled the
Developer Hub.

In the Dev Hub, we will create a Scratch org and start building our first components of the app on the Salesforce
platform! Let’s dive in!

Create a Project

To create a project:

Open up your terminal window and enter the following command:

1.

sfdx force:project:create -n workbook --template standard

Salesforce DX will create the files you’ll need to start your project. The project is named “workbook,” and the project
will use the standard template. The template gives us additional files that will help us manage version control and
useVSCode extensions.

When DX is finished generating the project files, your terminal should look similar to Figure 2.1.

Figure 2.1: After DX has generated your project files, your terminal should look like this.

Once DX finished generating the project files, move into the project folder using the following command: cd
workbook

Open our project in VSCode using this command: code .

2.

3.

Note: Because we’ll be using the Salesforce CLI and VS Code, you may want to open the terminal window in VSCode.
Select Terminal > New Terminal from the navigation menu or type ^ ~.

Authenticate Against the Dev Hub

Next, we’ll need to authenticate against our Dev Hub, which lives within our Partner Business Org. In the terminal
window, type this command:

sfdx force:auth:web:login -d -a DevHub.

The -d tells SFDX that this is our dev hub org and -a gives the org an alias. After the command executes, a Salesforce
web page will launch and request that you enter your Partner Business Org credentials.

After allowing access to your Partner Business Org, a message in the terminal will confirm that this action has been
completed and we no longer need the browser. Close the browser window and return to VSCode.

Develop with a Scratch Org

Our next task is to create the all-important scratch org. A scratch org is an environment that can be configured to
emulate different features and preferences. For example, you can use scratch orgs to test your code in different
Salesforce editions. Scratch orgs are source-driven and disposable, so you can create as many as you need. You can
share a scratch org configuration file with other team members, so you all have the same basic org in which to do your
development.

Configure the Scratch Org

Let’s take a look at some of the project files we created within our project. In VSCode, navigate to the project-scratch-
def.json file which you will find in the project’s config folder. The file holds the configuration for the scratch org. Within
it, we can enable all sorts of features that might be applicable to our use cases.

Add the following, within the enclosing brackets of the definition file:1.

"settings": {

 "mobileSettings": {

 "enableS1EncryptedStoragePref2": false

 }

 }

Change the edition to “Partner Developer.” This will allow us to create the org with enhanced limits. The resulting
file will look like Figure 2.2.

2.

Figure 2.2: The project-scratch-def.json configuration.

Let’s take a look at the sfdx-project.json file, which sits in the root of the project folder. Remember when we registered
the namespace with our PBO? In order to make use of the namespace, we need to add the namespace the sfdx-

project.json file.

After you add your namespace (remember, your namespace will be different to my own), your sfdx-project.json file
should look similar to the one shown in Figure 2.3.

Figure 2.3: Add your namespace to the sfdx-project.json file. Instead of workbook001, use the namespace that you
created earlier.

Create the Scratch Org

Now that we’ve made the modifications to our scratch org’s instructions, it’s time to create it. We can do that using the
Salesforce CLI In your terminal, enter the following command:

sfdx force:org:create -f workbook/config/project-scratch-def.json -a workbookScratch -s

SFDX will create the scratch org using the configuration file we’ve modified. In addition, specifying an alias using -a
allows us to refer to the correct scratch org in future commands. Lastly, -s sets the org as our default scratch org,
meaning we don’t necessarily need to provide the alias in future commands. For clarity in this workbook, we will specify
the alias regardless.

Note: Your directory could be different, depending on the name of your project and where you are within your terminal.

When the scratch org is created, open it using the following command, specifying the alias of the org:

sfdx force:org:open -u workbookScratch

The scratch org will open in your default browser and present the setup menu on the home screen. If the org opens
with an error, fear not. This happens when the org is opened before its domain has been properly registered. If you sit
tight for a minute or two and then refresh the page, the error should resolve itself.

Congratulations! You’ve taken your first steps on your journey to AppExchange. Now it’s time to start building!

Part 3 | Create and Modify Objects
Now that our Salesforce DX project is setup, it’s time to begin work on the Property Management app. We’ll start by
working with objects.

Generally speaking, objects represent database tables that contain your organization's information. For example, the
central object in the Salesforce data model represents accounts—companies and organizations involved with your
business, such as customers, partners, and competitors. The term “record” describes a particular occurrence of an
object (such as a specific account like “IBM” or “United Airlines” that is represented by an Account object). A record is
analogous to a row in a database table.

Objects already created for you by Salesforce are called standard objects. Objects you create in your projects are called
custom objects. Objects you create that map to data stored outside of Salesforce are called external objects.
In this tutorial, we will create a custom object, a table that contains data that defines the attributes of different
properties that the property management app will help manage.

Define a Custom Object

The first thing we’ll need to do is define our object model. The core of our object model for a property management
solution, will be the property itself, so let’s create that as an object!

Opening our Scratch org in our browser, navigate to the Setup Object Manager screen and then select Create >
Custom Object (Figure 3.1).

1.

Figure 3.1: To create a custom object, open the Setup Object Manager screen and select Custom Object from the
Create pull-down menu.

2. On the New Custom Objects screen, enter the following options:

Label = Property

Plural Label = Properties

Object Name = Property

Record Name = Property Name

Data Type = Text

Allow Reports = True

Allow Activities = True

Object Classification & Deployment Status we can leave as the default settings

Allow Search = True

Launch New Custom Tab Wizard after saving this custom object = True

●

●

●

●

●

●

●

●

●

●

3. Click Save.

4. On the New Custom Object Tab, select any icon from the “Tab Style” lookup. I’ve chosen “Bank.” Click the Next
button.

5. On the Add to Profiles page, choose “Apply one tab visibility to all profiles” and change this to Tab Hidden. Click the
Next button.

6. On the Add Custom Apps page, uncheck “Include Tab” for every profile and then click the Save button.

Congratulations! You’ve built a database table in Salesforce. Look at the object you created. Notice that the object API
name is prefixed with your namespace.

The namespace ensures that all objects—fields, components, classes, and so on—are unique, across the entire Salesforce
customer base! In practical terms, this means your app can be installed in customer instances without clashing with
objects and components that our customers may have created in their own orgs.

Add Fields to the Object

Now let’s allow our users to provide a bit more detail to the property by adding some additional fields to the object.

Select “Fields and Relationships” in the left hand pane of the Property object and add a couple of fields (Figure
3.2).

1.

Figure 3.2: The Fields & Relationships page.

Select the New button. In the Choose the field type screen, choose “Text” and then click Next.

In the next screen, enter “Street” as the Field Label & Field Name and Length as 255. Click Next.

On the Establish field-level security screen, uncheck Visibility for all profiles. Click Next and then Save.

Follow the above process, creating fields for City, State, Post Code and Country, until your object looks like Figure
3.3.

2.

3.

4.

5.

Figure 3.3: The object models with the Street, City, State, Postal Code, and Country fields added.

Let’s create one more field, but this time, choose “Lookup Relationship.”

On the Field & Relationships page, click New.

On the Choose field type page, choose “Lookup Relationship” and click Next.

On the Choose the related object page, select “Contact” from the drop down and then press Next.

On the next page, change “Contact” to say “Owner” in both Field Label and Field Name, leave everything else as
is and press Next.

Once again, we will clear out the Visibility field for all profiles and select Next.

Leave Steps 5 & 6 as they are and save.

1.

2.

3.

4.

5.

6.

Great! We have a new object in Salesforce to store a property name, address and owner. Since this is an example app,
let’s leave it there.

As an ISV though, what we’d really like to do is to keep all of the functionality related to our application contained
within its own App in the App Launcher of Salesforce. So let’s do that by coming out of the Object Manager and
returning to Setup Home.

Search for and click on “App Manager” in the Setup menu. Then click the New Lightning App button, which is
located in the upper right corner of the page (Figure 3.4).

1.

Figure 3.4: The Lightning Experience App Manager.

In the App Details and Branding page (Figure 3.5), fill out Property Manager and Property_Manager as the App
Name and Developer Name, respectively. Feel free to upload a nice image to accompany your app and style the
colour to your choosing. To retain our own branding within our app when installed to a customer org, we’ll check
the box “Org Theme Options” box.

2.

Figure 3.5: In the App Details and Branding box, name the new Lightning App and check Org Theme Options.

Leave App Options and Utility Items as they are and step through the wizard to “Navigation Items.” Here, we can
choose from all of the standard and custom tabs within the org. Let’s just choose “Properties” for now and click
“Next.”

Finally, leave the last page blank and hit “Save & Finish.”

3.

4.

Ideally, at this point you’d be able to click the App Launcher and find that the “Property Manager” App is visible there.
Alas, you’ll find that it’s not. This is because we’ve hidden the tab and the app from all profiles. This is done for a very
good reason.

Create a Permission Set

As an ISV, we will control access to our application’s functionality using Permission Sets. Permission Sets can be added
to specific Users or Profiles by your end customers, in order to provide the relevant access that their users need. You
may choose to include multiple permission sets within your solution, for example an “Admin” and “Standard User“
permission which your customers can provision accordingly.

For this project , we’ll create a single permission set which gives access to everything we create. So let’s do that now!

In Setup Home, enter “Permission Sets” in the Quick Find box. When Permission Sets appear below the box, click
on it (See Figure 3.6).

1.

Figure 3.6: Setup Permission Sets page.

Click the New button.

On the Permission Set Create page, enter “Property Manager” in the Label field. The API Name field should
automatically populate with “Property_Manager.” You can enter a description in the Description box, but it is not
necessary. See Figure 3.7.

2.

3.

Figure 3.7: Type “Property Manager” in the Label box and leave License set to None.

Leave the “License” drop down set to “None.” This option allows ISVs to have more stringent control over exactly
which users can be allocated our permission set, should they wish. In the real world, you may wish to choose an
option, such as “Salesforce,” to prevent users with more limited licenses from accessing your app. Leaving this as
“None” allows administrators at customer instances to provision the licenses to whomever they wish.

Click the Save button. You will return to the Setup Permission Sets page.

Enter “Properties” into the Find Setting box and then select Object Settings (Figure 3.8).

4.

5.

6.

Figure 3.8: Type “properties” in the Find Settings… box and then select Object Settings.

On the App Permissions screen, click the Edit button.

Check the boxes next to these permissions:

7.

8.

Tab Settings: Visible & Available

Object Permissions: Read, Create, Edit, Delete, View All

Field Permissions: Edit on City, Country, Post Code, State, Street, Owner

●

●

●

When you have finished, your screen should look like Figure 3.9.

Figure 3.9: Set permissions for Tab, Object, and Field.

Return to the “Property Manager” permission set, select “Assigned Apps,” and click the Edit button.

On the Assigned App screen, add “Property Manager” to “Enabled Apps,” as shown in Figure 3.10.

9.

10.

Figure 3.10: Add the Property Manager app to Enabled Apps.

Assign the Permission Set to a User

So that we can test that everything is working correctly, let’s assign the permission set to a user in this scratch org.

On the permission set, click the “Manage Assignments” button and then select “Add Assignments.”

Check the box next to “User, User.” This is the default name given to the user who created the scratch org - that’s
us!

Click the Assign button and then Done.

1.

2.

3.

Create a Property Record

To complete this step and ensure everything is going to plan, let’s create a property record!

Use the App Launcher in the top left corner to open all the apps we have permission to use and you’ll see the
“Property Manager” app. Select the App and you’ll be dropped into the “Properties” tab, which we added to the
app earlier.

Click “New” and give the property a name and an address. When we go to add a Property Owner, you’ll see the
option to create a new Contact, that’s because we don’t have any Contacts in this scratch org.

Click Create Contact and create ourselves within Salesforce. Once done, save the Contact. Your screen should
look similar to Figure 3.11.

Click Save once you’re happy with the data.

1.

2.

3.

4.

Figure 3.11: A new property record.

Using the power of declarative programming, you have quickly created a custom object—a database table—complete
with a user interface.

But that’s not all, by creating a custom object in Salesforce, the object is immediately available for API calls, too. you
wanted to create these records from an external system, you will be able to do that right away! For this project though,
we’re going to stick to the platform and extend our property manager natively.

Part 4 | Use Apex for Server Side Development
In order for our customers to visualise the real estate properties they’re managing, we want to provide them with a way
to locate the properties on Google maps. In order to do that, we’ll need to do two things:

Build out some logic on the Salesforce server that will query the property location, based on the record the
customer is currently viewing.

We’ll need to show that data via a sleek and modern user interface--a responsive web page that displays the
locations on a map for our customers.

1.

2.

To do this, we will use Apex. Apex is a server side development language similar to many other object-oriented
programming languages. It enables you to execute flow and transaction control statements on Salesforce servers in
conjunction with calls to the API. Apex also enables you to add business logic to most system events, including button
clicks, related record updates, and Visualforce pages.

Apex is like Java for Salesforce. It enables you to add and interact with data in the Lightning Platform persistence layer.
It uses classes, data types, variables, and if-else statements. You can make it execute based on a condition, or have a
block of code execute repeatedly. You should use Apex when you need functionality that is not supported by existing
functionality in the Salesforce platform.

Create an Apex Class

Let’s get started by returning to VSCode and creating an Apex Class.

In VSCode, right click the “classes” folder and then select “SFDX: Create Apex Class” from the pop-up menu
(Figure 4.1). The classes folder is under force-app\main\default.

In the desired filename box, type “PropertyUtils” and press Enter.

At Select classes for the default folder location and press Enter. The result will be a new PropertyUtils class with a
default Class definition and Constructor.

1.

2.

3.

Figure 4.1: To create an Apex Class, right click the classes folder and then select SFDS: Create Apex Class.

We won’t be needing the constructor public PropertyUtils(), so delete it. We’ll create a static method that will be
called by our UI component. The The PropertyUtils class should look like this.

4.

public with sharing class PropertyUtils {

}

The “with sharing” declaration means that our class will respect the sharing rules defined within our customers’ org.
This is exactly what we want to do for the majority of the Apex code we write in our applications.

Write an Apex Method

Next, we’ll create a new Apex method called “getPropertyAddress,” which is going to take a record ID as a parameter
and use a method to query the address fields related to that record. We’ll do that using the Salesforce Object Query
Language (SOQL), like so:

 public static void getPropertyAddress(id recId) {

 workbook001__Property__c prop = [SELECT workbook001__street__c, workbook001__city__c,

 system.debug(prop);

 }

The __c after the field names indicate that you created custom fields. Standard fields that are provided by default in
Salesforce are accessed using the same type of dot notation but without the __c.

Note: Remember to replace the namespace prefix “workbook001” with your own namespace. Once done, run the
following command in your terminal (replacing "workbookScratch" with your own scratch org name, if different, or
removing it completely if you set the org as the default earlier):

sfdx force:source:push -u workbookScratch

Check Your Work with the Salesforce Developer Console

The Salesforce Developer Console provides tools for developing your components and app. You can check your work
so far by opening up the Developer Console in your scratch org and using anonymous Apex to pass in a record ID for
our Property object.

Open up your scratch org and navigate to the record we created earlier. In the URL for the record, we’ll be able to
get the ID. It should look something like this:

1.

https://drive-force-3622-dev-

ed.lightning.force.com/lightning/r/workbook001__Property__c/a002500000AFc4oAAD/view

Now open up the developer console. Click on the cog icon in the top right hand corner of Salesforce and then
click the Developer Console option as shown in Figure 4.2.

2.

Figure 4.2: To open the Developer Console, click the cog in the upper right corner of the page and then click Developer
Console from the menu.

Open Debug > Open Execute Anonymous Window (Figure 4.3). A new development window will open and we
can enter some simple code, let’s enter the following snippet, replacing the ID with the ID you’ve copied from the
URL in the step above:

3.

PropertyUtils.getPropertyAddress('a002500000AFc4oAAD');

Figure 4.3: The Developer Console.

 A new Log will appear in your developer console and double-clicking the log will bring up the Apex
execution.There’s a lot of information here, so let’s check the “Debug Only” checkbox to see our debug line.

Double click the line that’s shown in the Execution log and see the record we’ve queried - it works!

4.

5.

12:42:11:020 USER_DEBUG [5]|DEBUG|workbook001__Property__c:{workbook001__Street__c=415 Mission St,

workbook001__City__c=San Francisco, workbook001__State__c=California, workbook001__Country__c=United

States, workbook001__Post_Code__c=CA 94105, Id=a002500000AFc4oAAD}

Create a Data Structure

Now, when we implement our map, we’ll need to provide the data in a structure that the base Lightning Web
Component that we’re going to use (lightning-map), is going to accept. We’ll get into more detail on Lightning Web
Components later, but for now, know that we can use the Lightning Web Component library to see the base
component specifications, documentation and even an example implementation here .

https://developer.salesforce.com/docs/component-library/bundle/lightning-map/specification

If we look at the Documentation, we can see that we need to pass map-markers the following information:

location (an object, consisting of...)

City

Country

PostalCode

State

Street

Or a set of coordinates (we’ll be using the fields above, since we already created input fields for them on our
Property Object!)

title

description

icon

●

○

○

○

○

○

○

●

●

●

Since there’s no standard structure within Salesforce to hold this data structure, we’ll need to create it. We’ll do that by
creating a couple of inner Classes, inside the “PropertyUtils” class.

Let’s start with that Location data structure and give it a Constructor to help us populate it, like so:1.

public class Location{

 @AuraEnabled

 public String Street;

 @AuraEnabled

 public String PostalCode;

 @AuraEnabled

 public String City;

 @AuraEnabled

 public String State;

 @AuraEnabled

 public String Country;

 public Location(String strt, String cit, String stat, String pc, String ctry){

 Street = strt;

 City = cit;

 State = stat;

 PostalCode = pc;

 Country = ctry;

 }

 }

We’ve marked these as “AuraEnabled,” and we’ll come back to why that is later on. For now, let’s move on and
create a structure that Map-Marker can consume. It is going to contain the Location as one of its properties.

2.

public class MapMarker{

 @AuraEnabled

 public String icon;

 @AuraEnabled

 public String title;

 @AuraEnabled

 public String description;

 @AuraEnabled

 public Location location;

 public MapMarker(String i, String t, String d, Location l){

 icon = i;

 title = t;

 description = d;

 location = l;

 }

 }

Great. Now we have the structure for an object that map-marker can accept, all that’s left is for us to create an instance
of a MapMarker and give it the address data from the record we queried earlier.

We also need to provide the icon and description data. For this example we’re not using those so I’ll populate
this with dummy data. Lastly, we need our method to give this data to the UI component that’s going to call it, so
let’s have the method return a list of MapMarkers (although we’re only returning one at this point, it’ll make our
lives easier later). Your method should end up looking like this:

3.

public static List<MapMarker> getPropertyAddress(id recId) {

 workbook001__Property__c prop = [SELECT Name, workbook001__street__c, workbook001__ci

 Location loc = new Location(prop.workbook001__street__c, prop.workbook001__city__c, p

 MapMarker mark = new MapMarker('icon',prop.Name, 'description', loc);

 List<MapMarker> locs = new List<MapMarker>{mark};

 return locs;

 }

Push this to the scratch org using the following command in the terminal:4.

sfdx force:source:push -u workbookScratch

Once again, we can test this by jumping into the developer console and calling the method with our record. This
time, let’s write the debug line in the execute anonymous window, since I’ve removed that from my method for
cleanliness. Enter the following (once again replacing the ID with the ID of your own record):

5.

system.debug(PropertyUtils.getPropertyAddress('a002500000AFc4oAAD'));

Follow the same process as before to view our debug line:6.

13:16:33:025 USER_DEBUG [1]|DEBUG|(MapMarker:[description=description, icon=icon, location=Location:

[City=San Francisco, Country=United States, PostalCode=CA 94105, State=California, Street=415

Mission St], title=title])

Excellent! Our server side Apex code is able to retrieve the address details, given a Property record, and then provide
the results in a structure that can be interpreted by a Lightning Web Component, but there’s one last piece we’re
missing.

Use @AuraEnabled Annotation to Expose Lightning Components

In order for an Apex method to be accessed by a component, the method needs to make itself reachable by the Aura
framework, something we won’t be going into detail on here. We do this by applying the @AuraEnabled annotation to
our method. What we’d also like to do to help our users utilise our apps quickly, is to cache the data that’s returned by
this method, using the optional (cacheable=true) parameter. The final result of our method will look like this:

@AuraEnabled(cacheable=true)

 public static List<MapMarker> getPropertyAddress(id recId) {

 workbook001__Property__c prop = [SELECT workbook001__street__c, workbook001__city__c,

 Location loc = new Location(prop.workbook001__street__c, prop.workbook001__city__c, p

 MapMarker mark = new MapMarker('icon', 'title', 'description', loc);

 List<MapMarker> locs = new List<MapMarker>{mark};

 return locs;

 }

If you have any doubts on the above, refer to the full Class, here:

public with sharing class PropertyUtils {

 @AuraEnabled(cacheable=true)

 public static List<MapMarker> getPropertyAddress(id recId) {

 system.debug(recId);

 workbook001__Property__c prop = [SELECT Name, workbook001__street__c, workbook001__ci

 Location loc = new Location(prop.workbook001__street__c, prop.workbook001__city__c, p

 MapMarker mark = new MapMarker('icon', prop.Name, 'description', loc);

 List<MapMarker> locs = new List<MapMarker>{mark};

 return locs;

 }

 public class MapMarker{

 @AuraEnabled

 public String icon;

 @AuraEnabled

 public String title;

 @AuraEnabled

 public String description;

 @AuraEnabled

 public Location location;

 public MapMarker(String i, String t, String d, Location l){

 icon = i;

 title = t;

 description = d;

 location = l;

 }

 }

 public class Location{

 @AuraEnabled

 public String Street;

 @AuraEnabled

 public String PostalCode;

 @AuraEnabled

 public String City;

 @AuraEnabled

 public String State;

 @AuraEnabled

 public String Country;

 public Location(String strt, String cit, String stat, String pc, String ctry){

 Street = strt;

 City = cit;

 State = stat;

 PostalCode = pc;

 Country = ctry;

 }

 }

}

Unit Testing Your Apex Code

In order to publish AppExchange apps, Apex code needs test coverage. The solution to this is to write Apex Unit Tests.
Apex Unit Test are classes which exist purely to test the outcomes of our Apex methods and help to ensure that future
changes don’t introduce bugs. If we attempt to upload a package which has under 75% Apex code coverage, then
we’ll be blocked from uploading it. We currently have 0% test coverage, so let’s correct that by creating another Apex
class!

Create Apex Unit Tests

To create a class for Apex Unit Tests:

Right click the “classes” folder in our project and select “SFDX: Create Apex Class.”

In the text box , enter “PropertyUtils_Test” and hit Enter. On the final prompt, choose the default location and
press Enter.

At the top of the file, above the class, write “@isTest.” @isTest indicates that PropertyUtils_Test is a test class.

1.

2.

3.

@isTestpublic class PropertyUtils_Test {

Create a Test Setup Method

In the context of a test method, a dummy Salesforce database is provided with no data whatsoever. There is a means
of accessing the live data, but this is generally considered bad practice, since we can’t guarantee what data will be
available to us (particularly in the context of a managed package, where customer data will vary).

The test should be self-contained and we should be able to predict its outcome. For that reason, we’ll introduce a Test
Setup method, which will execute before all other test methods in the class and provide us with the data we need.
Within this setup method, we’ll create an instance of our property record and insert it into the empty test database, so
we have a record that our test methods can use. Remember to replace the namespace with your own:

 @testSetup

 static void propertyUtilsTestSetup(){

 workbook001__property__c property = new workbook001__property__c(

 workbook001__street__c = '415 Mission St',

 workbook001__City__c = 'San Francisco',

 workbook001__Post_code__c = 'CA 94105',

 workbook001__Country__c = 'United States');

 insert property;

 }

To ensure the correct behaviour occurs in a wide variety of scenarios, unit tests should cover a range of scenarios for
our Apex code. Because this is a demo application that is designed to prove the concept of Apex unit testing, we’re
only going to create a single test that ensures that our method provides us with the output we’d expect.

We’ll start by querying the database to retrieve the record inserted in our test method. We'll then run the test case, by
calling the method we wrote above. We'll then assert that the response provided by the method is in line with our
expectations:

 @isTest

 static void getPropertyAddressTest(){

 workbook001__property__c property = [SELECT id FROM workbook001__property__c][0];

 test.startTest();

 propertyUtils.MapMarker result = PropertyUtils.getPropertyAddress(property.id)[0];

 test.stopTest();

 system.assert(result.location.Street == '415 Mission St');

 system.assert(result.location.City == 'San Francisco');

 system.assert(result.location.PostalCode == 'CA 94105');

 system.assert(result.location.Country == 'United States');

 }

Run Tests in the Developer Console

We can run these tests from VSCode, but instead, let’s open the developer console to get some insights.

Open the developer console by clicking the cog within Salesforce and selecting Developer Console.

Select Test > New Run.

In the window which opens, click on our new test class.

Next, click on the checkbox beside our test method and select Run (Figure 4.4).

1.

2.

3.

4.

Figure 4.4: In the Developer Console, check the test method you want to run and then click the Run button.

5. Under the “Test” tab, at the bottom of the developer console, you’ll find that your test ran successfully. Try altering
some of the values in the assertion and run the test again, you’ll see that it then fails. All tests need to pass in order to
ensure a successful upload of our package later on.

We mentioned that 75% test coverage is required in order for us to upload our package. Fortunately, we can check
that value in the Developer Console too! Look to the bottom right of the Test tab and you’ll find the overall test
coverage (Figure 4.5).

Figure 4.5: Look at the bottom right of the Developer Console to see overall test coverage.

Since we have a single Class within our project, we can see 100% for the Class and 100% for the overall coverage. As
you can imagine, with multiple Classes this gives us a great window into which Classes need unit testing in order for
our package to be as reliable as possible.

View Tested Code Line-by-Line

The last thing to be aware of within the Developer Console is the ability to see the granular line-by-line view of code
coverage.

In the Developer Console, go to File > Open > Classes > Property Utils and then select “Open.”

Select the “Code Coverage” drop down in the top left corner and then select one of the 2 options (Not “None”).
The Developer Console will highlight our code coverage for us and give us a view into exactly which lines have
been covered (Figure 4.6). For uncovered lines, the Developer Console would highlight these in red. Fortunately,
we have 100% coverage so we can be sure our package will not fail for this reason!

1.

2.

Figure 4.6: The Developer Console highlights the code that is covered.

So, now that we’ve built and tested the backend, we better show the data to our users, using a Lightning Web
Component!

Part 5 | Create a User Interface Using Lightning
Web Components

Lightning Web Components, or LWCs, are the latest in modern, responsive, custom user interfaces built on the
Salesforce platform. Based on the web standards of today, LWCs consist primarily of HTML, Javascript and CSS and can
be leveraged to build extremely complex and intuitive user experiences on the platform. You’ve already seen a glimpse
of these if you opened the lightning-map example in our documentation earlier on.

Build a User Interface

In the previous section we developed a backend method, using Apex, to provide a frontend with the data it needs to
output a location on a map. In this section, we’ll build that frontend component!

So let’s dive into VSCode and start building.

As we did with our Apex Class previously, let’s right click on the lwc folder in VSCode and select SFDX: Create a
Lightning Web Component (Figure 5.1).

In the text box, type “propertyMap,” which is what we’ll call the component Leave the containing folder as the
default and press Enter.

1.

2.

In the lwc folder, you will see a new folder called propertyMap containing 3 files that we’ll use to build our user
interface (Figure 5.2):

propertyMap.html
propertyMap.js
propertyMap.js-meta.xml

https://developer.salesforce.com/docs/component-library/bundle/lightning-map/example

Figure 5.1: Right click the lwc and select SFDX: Create Lightning Web Component.

Figure 5.2: New Lightning Web Component with 3 files.

Let’s start by opening the html file. Currently, it should consist only of a template opening and closing tag. Let’s
put some dummy text in there, “Hello World!” feels appropriate.

Next, open the propertyMap.js-meta.xml and you’ll see some default data:

3.

4.

<?xml version="1.0" encoding="UTF-8"?>

<LightningComponentBundle xmlns="http://soap.sforce.com/2006/04/metadata" fqn="propertyMap"> <apiVer

sion>46.0</apiVersion> <isExposed>false</isExposed></LightningComponentBundle>

Change the isExposed value to true. This exposes the file to the Lightning App Builder, which is the tool we’ll be
using to customize our user interface.

Next, we need to indicate on which pages our component should be available; record pages, app pages or home
pages. Since our component requires the ID of the record our user is looking at, enter “lighting__RecordPage” as
the target value for our component:

5.

6.

<?xml version="1.0" encoding="UTF-8"?>

<LightningComponentBundle xmlns="http://soap.sforce.com/2006/04/metadata" fqn="propert

 <apiVersion>46.0</apiVersion>

 <isExposed>true</isExposed>

 <targets>

 <target>lightning__RecordPage</target>

 </targets>

</LightningComponentBundle>

Push this to your scratch org, once again using the following command and open the record we created earlier.7.

sfdx force:source:push -u workbookScratch

Now, we’ll need to use the Lightning App Builder to add our component to the record page. We can do this by
going to the cog in the top right hand corner and selecting “Edit Page.” This tool allows us to completely
customise the view of our Property record screen, using Standard and Custom components.

Let’s customise by adding our brand new component. Scroll to the “Custom“ section of the Lightning
Components pane and drag our newly created component from the left hand pane of the component, as shown
in Figure 5.3.

8.

9.

Figure 5.3: Drag the custom component into the right-hand column of the page.

Save the page.

On the Activation: Property Record Page, click the Assign as Org Default button. This sets the current page to be
the default for all the Property records in our app (Figure 5.4).

10.

11.

Figure 5.4: To set the current page as the default for all Property records, click the Assign as Org Default button.

12. Click save on the confirmation page and then use the Back button to return to the record screen. Hey presto! We
can now see “Hello World!” on the record page.

Whilst this is great in itself, our users are going to want a little bit more. Let’s pull that data from the Apex method we
created and show our users an intuitive map on which they can view a property’s location.

Use JavaScript to Display Map

We’ll need to use JavaScript to do that, so go ahead and open the propertyMap.js file. At the moment, we’re just
importing a custom wrapper of the standard HTML element, called LightningElement and then extending it to create a
JavaScript class. We export this class so that it can be used by other components within our app (components within
components is a key concept of lightning component development!).

We know that we’ll need the ID of the record we’re currently looking at. Fortunately, Salesforce provides us with a super
easy way to retrieve that using @api recordId. The @api decorator defines the property as public, meaning that any
parent components in this component tree can read this value.

Before we can use @api, we need to import it, alongside LightningElement. So let’s add that to our JavaScript.
Our component now has visibility of our record ID. If we wanted to test this, we could output recordId using
console.log and push it to our scratch org, but let’s press on with the development.

import {LightningElement, api} from 'lwc';

export default class LightningExampleMapSingleMarker extends LightningElement {

 @api recordId;

}

Access the Apex Method with @wire

Our next step is to access our Apex method and we’re going to do that using another annotation; @wire. @wire uses a
reactive wire service which Salesforce developers can use to build components that can gather data from Salesforce in
a variety of different ways; the adapter can read object metadata, pull data directly from records without using Apex,
retrieve lists of records using listview IDs and much much more. What we can also use @wire for is calling Apex
methods, which is what we’ll need to do here.

Firstly, we need to import our Apex method into our component, like so:1.

import getPropertyAddress from '@salesforce/apex/PropertyUtils.getPropertyAddress';

We’ll then need to define a variable which can store the response from our Apex Method, let’s call this
“propertyLocs” and import and use another annotation @track. This annotation allows us to rerender the
component if it’s value changes, as @api does, but tacked properties are private and cannot be read or set by
other components. Our JavaScript file should now look like this:

2.

import {LightningElement, api, wire, track} from 'lwc';

import getPropertyAddress from '@salesforce/apex/PropertyUtils.getPropertyAddress';

export default class LightningExampleMapSingleMarker extends LightningElement {

 @api recordId;

 @track propertyLocs;

}

We’ll now need to implement the JavaScript function to read the data from our method. We’ll start by defining
the method to call using the wire adapter:

3.

@wire(getPropertyAddress, {recId: '$recordId'})And beneath it, define our method, called

"wiredProperties" wiredProperties({error,data}) {

If our method call returns data, then let’s push the response into propertyLocs, which we defined earlier. We can
also turn the response into a human-readable String and output it to the console, so we can be sure the function
is working.

4.

 @wire(getPropertyAddress, {recId: '$recordId'})

 wiredProperties({error,data}) {

 if (data) {

 this.propertyLocs = data;

 console.log(JSON.stringify(data, null, '\t'));

Lastly, should our wire adapter bring back any errors, we can push those into a tracked “error” property which, in
a real world scenario, we may want to expose to a user or take some other action off the back of. We won’t be
handling this error here, but let’s at least log it to the Developer Console so we have a view of any problems
which may occur. The final resulting JavaScript file should look like so:

5.

import {LightningElement, api, wire, track} from 'lwc';

import getPropertyAddress from '@salesforce/apex/PropertyUtils.getPropertyAddress';

export default class PropertyMap extends LightningElement {

 @api recordId;

 @track propertyLocs;

 @track error;

 @wire(getPropertyAddress, {recId: '$recordId'})

 wiredProperties({error,data}) {

 if (data) {

 this.propertyLocs = data;

 console.log(JSON.stringify(data, null, '\t'));

 } else if (error) {

 console.log('error');

 console.log(JSON.stringify(error, null, '\t'));

 this.error = error;

 }

 }

}

Let’s push this to our Scratch org and open our test record:6.

sfdx force:source:push -u workbookScratch

We can see our JavaScript in action using the Developer Console within the browser. I’m using Google Chrome, but no
matter your browser, so long as it’s supported by Salesforce, you should be able to see something similar to Figure 5.5.

Figure 5.5: JavaScript communicating with Apex, as seen in Salesforce Developers Console.

Fantastic! Our JavaScript is communicating with our Apex Class and able to retrieve the data from the record we’re
looking at. Of course, we can’t expect our users to open the developer console in their browsers, so let’s implement that
final step to get this data onto their screens!

Open your HTML file and remove the “Hello World!” that we entered earlier. You’ll remember we’re using the lightning-
map base LWC and if we review the documentation, we only have 1 required parameter; map-markers. Let’s implement
lightning-map and associate the map-markers parameter with our propertyLocs property. Our HTML file should look like
this:

<template>

 <lightning-map

 map-markers={propertyLocs}>

 </lightning-map>

</template>

Unfortunately, if we push this to our scratch org we’ll see an error message when we try to load the page. Go ahead and
try it:

sfdx force:source:push -u workbookScratch

This is happening because when the page initially loads, propertyLocs has no value at all and when the component
initially loads propertyLocs is empty. This is okay, since it only takes a second for our wire adapter to do its work and,
remember we made propertyLocs tracked?

This means the component will re-render the second we retrieve the value. What we need to do is prevent the
component from trying to display the map before propertyLocs has a value. We’ll do that using a second HTML
template, assess the value of propertyLocs and render the map only when it has a value, like so:

<template>

 <template if:true={propertyLocs}>

 <lightning-map

 map-markers={propertyLocs}>

 </lightning-map>

 </template>

</template>

Let’s push this to our org, once again using the following command:

sfdx force:source:push -u workbookScratch

Figure 5.6: So far, your map should appear like this.

The only issue you might be noticing from your implementations, is that the map is highly zoomed in. This zoom level
is currently being determined by the Google APIs but is too close to provide the value for our property management
app. Fortunately, the lightning-map component has a solution. Let’s set the zoom level to something more useful, I’m
going to choose 12:

<template>

 <template if:true={propertyLocs}>

 <lightning-map

 map-markers={propertyLocs}

 zoom-level='12'>

 </lightning-map>

 </template>

</template>

Figure 5.7: The map in an app with the adjusted zoom-level.

Incredible! With the backing of our base Lightning Web Component provided by Salesforce, we are able to render an
interactive Google map with just 7 lines of HTML and a small JavaScript function, combined with an Apex Class. This is
a true demonstration of the power of the Lightning Platform.

Part 6 | Create Engaging Customer Experiences
with Lightning Flow
The next thing we’d like to add to our property management app is a simple wizard that will enable property managers
to easily and conveniently book maintenance, inspections, and add other tasks related to managing their properties.

To do this, we are going to use Lightning Flow. Lightning Flow enables you to quickly automate business processes by
building applications, known as flows, that collect, update, edit, and create Salesforce information. Then make those
flows available to the right users or systems.

Create a Flow with Flow Builder

Flow Builder is one of the development tools within Lightning Flow. For our project, Flow Builder will enable you to use
point-and-click to create a flow declaratively. The Property Management wizard will be created with a screen flow—a
collection of screens and connectors that step the property managers a business process.

We’ll be using the standard Salesforce object “Task” to hold this data.

To create the wizard:

Open the Setup Menu, type in “Flow” in the Quick Find box, and select the “Flows” option that appears under
“Process Automation.”

In the Setup Flows window, click the New Flow button.

When the New Flow window appears (Figure 6.1), select Screen Flow and then click the Create button. This will
launch Flow Builder.

1.

2.

3.

Figure 6.1: To create a new flow, select Screen Flow and then click the Create button.

In Flow Builder, click the Manager tab in the Toolbox and click the New Resource button.

In the New Resource box, select Variable from the Resource type pull-down menu. This will reveal several
additional fields in the new Resource box. In the API Name field, type “RecordId.” Select Text from the Data Type
pull-down menu and check the Available for input box (Figure 6.2). If everything looks correct, click the Done
button.

4.

5.

RecordId is a specific variable that we can create in Lightning Flow which will automatically detect the ID of the record
we’re currently looking at. This functionality is provided by the platform when creating this specific resource, so we
don’t need to create any custom functionality to do this for us.

Figure 6.2: In the New Resource screen, the Resource type should be Variable, enter “RecordId” for the API Name,
select Text as the Data Type, and check the Available for input box.

Next, we want to define the fields which the user can input data into. Switch back over to the “Elements” tab in
the toolbox and drag a “Screen” anywhere on the canvas.

When the New Screen box appears, click on [Flow Label]. Under Screen Properties, located on the right side,
enter “Quick Task Create” into the Label field. (The API Name will auto-populate with the same name. Expand the
“Control Navigation” section of Screen Properties (you may need to scroll down a bit) and uncheck “Pause” box.

From the “Screen Components” pane on the left side of the New Screen box, drag and drop a Text field
component under [Flow Label]. Make sure the new text field is selected and then enter “Subject” in the Label
field. (Again, the API Name will auto-populate with the same text as the Label.) Check the Require box.

Next, drag a Long Text Area component under the Subject field and label it “Description.” If done correctly, your
screen should look like Figure 6.3. If everything looks good, click the Done button.

6.

7.

8.

9.

Figure 6.3: From the Screen Components column, drag the Text component and Long Text Area component onto the
screen.

Back at the main Flow Builder screen, click Elements under the Toolbox and then drag the “Create Records” onto
the screen. In the New Create Records box, enter “Create Task” into the Label field. and then select Use separate
variables, resources and literal values.

Under “Create a Record of This Object,” search for and choose “Task.” Then, under Set Field Values for the Task,
search for and select “Subject.” In the Value field, search for and enter {!Subject}. Then click the Add Field button
and add two more fields:

10.

11.

Description > {!Description}

WhatId > {!RecordId}

●

●

 Don’t click Done yet; stay in the New Create Records screen.

In the “Store Task ID in Variable” section, click the lookup field. Select “+ New Resource.” In the New Resource
box, choose Variable From the Resource Type pull-down menu.

Type “TaskId” into the API Name field and then select Text from the Data Type pull-down menu. Leave the
Available for input and Available for Output boxes unchecked.

Click the Done button. You will return to the New Create Records screen, which should now look Figure 6.4 If it
looks correct, click the Done button.

12.

13.

14.

Figure 6.4: Your Edit Create Records screen should look like this.

The last thing we want to do is to be able to associate a file to the new Task, so let’s drag another screen onto the
Canvas. Under Control Navigation, once again uncheck the “Pause” value and then select the header and enter
“Quick Task Create” as the label, followed by “Quick_Task_Create2” as the API Name. Next, drag the “File Upload”
screen component onto the Screen and fill out the following values:

15.

API Name > File_Upload

File Upload Label > File Upload

Related Record ID > {!TaskId}

●

●

●

Link the flow together by clicking on the circle at the bottom of the “Start” icon and dragging the connector to
our first “Quick Task Create.” Do the same from Quick Task Create to Create Task. Lastly, from Create Task to the
second Quick Task Create. Your canvas should look similar to Figure 6.5.

16.

Figure 6.5: Your new Flow should look like this!

Once done, save the Flow and call it “Quick Task Create.” Note: You may receive some errors, if these errors say
the following, then they can be ignored": “These issues don't prevent activation, but can cause problems when you
run the flow. XXXX (Screen) - This screen includes screen components that require Lightning runtime.

17.

If you are seeing other errors, you will likely need to fix them in line with the above instructions.

Debug and Activate the Flow

We can debug the Flow by selecting the “Debug” button. This will give us the option to associate a record with the flow.
Copy and paste the ID from our dummy record from earlier and follow the Flow through, attaching a file at the end.

If this was successful, activate the flow by returning to the Flow Builder and selecting the “Activate” button in the top
right corner.

Now we’ll add the Wizard and the tasks related list to our app screen.

Return to our dummy record and open the App Builder again, by selecting the cog > Edit Page.

Drag the standard “Flow” component anywhere onto the screen and then select the “Pass record ID into this
variable” option in the right hand pane.

Next, select the “Related” tab on the layout and drag the standard “Activities” component onto the screen.

Save the page and then return to our record.

1.

2.

3.

4.

Selecting the “Related View” will now give users information on tasks associated with the property, as shown in Figure
6.6.

Figure 6.6: Now customers can view properties on an interactive map.

Part 7 | Use Reports to Give Users Insights
Natively on the Platform
This final section of app building on the Salesforce platform surrounds reports. Reporting on Salesforce is provided. If
your users want deeper business intelligence insights, use Einstein Analytics.

For this quick example, we’re going to focus on Reports and provide our users with a view of how many properties a
particular Contact owns.

Create a Report

Open the App Launcher and search for “Reports,”

Select Reports and then Select “New Folder.” Give the folder an appropriate name, such as “Property Manager”
and then hit the Save button (Figure 7.1).

1.

2.

Figure 7.1: in the Create folder screen, enter the name of the folder.

Inside the new folder, select “New Report.” From the menu, search for and select ”Properties“ (Figure 7.2).3.

Figure 7.2: In the Choose Report Type screen, search for and then click on Properties.

On the page which appears, select the “Filters” menu on the left hand pane and change the “Show Me” option to
“All properties” and the “Created Date” option to “All Time.”

Expand the “Fields” pane and drag the “Owner” field onto the reporting canvas, next to “Property Name.”

Click on the arrow next to “Owner” and then select “Group Rows by this Field.”

Select the “Add Chart” button and then select the cog which appears next to the chart. Enter “Properties by
Owner” as the Chart Title and select whichever chart that you like, before clicking “Save & Run.”

Name the Report “Properties by Owner”, change the folder to “Property Manager” and click Save.

4.

5.

6.

7.

8.

Figure 7.3: Save Report screen.

You should have a very simple looking chart, similar to Figure 7.4.

Figure 7.4: Your chart should look like this.

Add a Utility Bar

For our users to have quick and easy access to our shiny new report, let’s add this to the Utility Bar within our app, so
users can always pop it open to see what the status of their owners looks like.

Head to the Setup Menu and search for “App Manager.” Select it, then hit edit next to the “Property Manager”
app.

Under the “Utility Items” menu, select “Add Utility Item” and choose an appropriate label.

Under the “Report” option, ensure you’ve chosen “Properties By Owner” and save it.

1.

2.

3.

While we’re here, we’ll allow our users quick access to the tasks they’ve created within our app, too! Select
“Navigation Items” and then add “Tasks” to our “Selected Items”. Click Save and return to your Property Manager
App.

4.

Figure 7.5: You have added a report to your Property Management app!

As far as our property management solution goes, that’s it! We’ve achieved a great amount on the platform in a short
period of time and hopefully you can begin to see how these examples might apply to your own use cases. For now
though, take some time to play around and admire what you’ve built, before we move into the next part: Packaging the
App.

Part 8 | Package and Distribute your Property
Manager
It’s time to take our solution and make it installable. By making the app installable, anyone in the Salesforce ecosystem
can install our fantastic property management solution into their org. This is why packaging is important. By bundling
your solution into a protected and replicable box, it can be delivered, downloaded, and installed by multiple
customers.

We currently have our programmatic metadata locally on our machine. However, everything that we built declaratively
is still within the scratch org. In order to package the solution, we’ll need to ensure all of the metadata is held within
our project.

Before we begin, we need to make some amendments to the “.forceIgnore” file in our project. This file tells SFDX to
ignore certain components that we are not interested in. We mentioned previously that ISVs use permission sets, rather
than profiles, to control access to functionality.

For that reason, we’ll add profiles to the forceIgnore document, along with the app switcher and Task metadata, since
we don’t want any modifications we made to tasks to impact our customers' use of the Task object.
Let's add the following lines:

/profiles/

AppSwitcher

force-app/main/default/applications/Task**

force-app/main/default/layouts/Task-Task

force-app/main/default/flexipages/Task**

Your file should look something like the following:

List files or directories below to ignore them when running force:source:push, force:source:pull,

and force:source:status# More information: https://developer.salesforce.com/docs/atlas.en-

us.sfdx_dev.meta/sfdx_dev/sfdx_dev_exclude_source.htm#package.xml# LWC configuration

files**/jsconfig.json**/.eslintrc.json# LWC Jest**/__tests__/****/profiles/****AppSwitcher**force-

app/main/default/applications/Task**force-app/main/default/layouts/Task-Taskforce-

app/main/default/flexipages/Task**

Pull Metadata from the Scratch Org

Once we’ve amended the forceIgnore file, we can pull down any metadata from our scratch org that we’ve not yet got
locally on our machine, we can do this using the following command:

sfdx force:source:pull -u appScratch

After a brief period of time, your terminal should suddenly be populated with all of the files not yet in the repository,
including our flow, report, page layouts, Flexipages and permission set. If you’ve already run the pull command in this
workbook, then you may see fewer results as part of this particular pull. Nevertheless, make sure that your project has
all of the relevant metadata within it. It should look like Figure 8.1.

Figure 8.1: Your project should look like this.

If you see any additional metadata within your own project, you can simply delete it from the project folder. You don’t
want to mistakenly add any unwanted metadata to your package.

Create the Package

Once all the metadata is cleanly stored within our project, it’s time to create the package. This is done very simply, with
the following command:

sfdx force:package:create --name PropertyManager --path force-app --packagetype Managed

We need to specify 3 things as part of this command.

First the package name. I’ve chosen “PropertyManager.”

Second, indicate the path where our metadata is held. In this case, the metadata is located in the force-app
folder of our package.

Third, indicate the type of package we wish to create. All AppExchange packages must be managed packages.
There are many advantages to managed packages, which we won’t delve into here.

●

●

●

Once you’ve executed the command, you’ll receive the following output:

sfdx-project.json has been updated.Successfully created a package. 0Ho1n000000KykOCAS

Running the command has automatically associated our package with our project! Let’s go and see exactly what
updates have taken place within our sfdx-project.json file, as shown in Figure 8.2.

Figure 8.2: Note that all of the IDs you see, will be different to my own, this is because they’re all unique.

Generate a Package Version

In order to install our solution into our customer’s orgs, we need to create an instance of a package called a package
version. A package version allows us to capture the metadata at a particular point in time, facilitating upgrades and
improvements to our product.

Let’s create our first package version now, using the following command, ensuring you replace the package parameter
with the ID of your own package, taken from the sfdx-project.json file:

sfdx force:package:version:create --package 0Ho1n000000KykOCAS --definitionfile config/project-

scratch-def.json --codecoverage --installationkeybypass --wait 10

That’s quite a hefty command, so let’s break it down:

Tell SFDX to create a package version associated with the package.

Point the package version to the scratch org definition file. This specifies a list of features and org preferences our
package depends upon.

A —codecoverage parameter is required for managed packages. It forces our Apex tests to run and ensures that
we have the necessary code coverage to promote our package (something we’ll get to shortly).

●

●

●

Because we want to distribute our solution far and wide via the AppExchange, we’ve added the
installationkeybypass parameter here to prevent password protection. (It is possible to associate a key with our
packages that will password-protects the installation, but we don’t want to do that in this case.) Tell SFDX to wait
up to 10 minutes for this request to complete.

●

Before too long, your terminal should look similar to my own. You’ll also see another update to your sfdx-project.json
file, to include the package version, as shown in Figure 8.3.:

Figure 8.3: You’ll see the package version update in your sfdx-project.json file.

Promote the Package

The last stage of creating our distributable solution is to promote it. In real terms, this is the process of uploading the
package to the Salesforce servers so that it an be replicated globally and available for installation into any Salesforce
instance.

In order to promote the package, execute the following command. Make sure that the ID is replaced with your own.

sfdx force:package:version:promote -p [id number]

michaelhol-ltm1:ISVWorkbook michael.holt$ sfdx force:package:version:promote -p 04t1n0000028NeRAAU

You’ll be prompted to confirm the action, as it cannot be reversed. Type “y” and return for the command to execute.

Part 9 | Install and Test Your App
The final section of this workbook, we’ll install and test our app within demo environments. To test this, we’ll use SFDX.
However, this time we’ll use it to create an Enterprise Edition test environment and remove our namespace from the

project definition file.

Start by opening the project-scratch-def.json file and replacing “Partner Developer” with “Enterprise”:1.

{

 "orgName": "michael.holt Company",

"edition": "Enterprise",

"features": [],

"settings": {

"orgPreferenceSettings": {

"s1DesktopEnabled": true,

"s1EncryptedStoragePref2": false

 }

 }

}

Next, open the sfdx-project.json and remove the reference to our namespace, leaving it blank:2.

{

"packageDirectories": [

{

"path": "force-app",

"default": true, "package": "PropertyManager",

"versionName": "ver 0.1",

"versionNumber": "0.1.0.NEXT"

}

],

"sfdcLoginUrl": "https://login.salesforce.com",

"sourceApiVersion": "46.0",

"packageAliases": {

"PropertyManager": "0Ho1n000000KykOCAS",

"PropertyManager@0.1.0-1": "04t1n0000028NeMAAU",

"PropertyManager@0.1.0-2": "04t1n0000028NeRAAU"

 }

}

Create the org using:3.

sfdx force:package:install --package 04t1n0000028NeRAAU -u EnterpriseTesting

Once you receive the success message, we can install our app via the command line, like so:4.

sfdx force:package:install --package 04t1n0000028NeRAAU -u EnterpriseTesting

SFDX will then provide us with a command we can execute to retrieve the status. Wait a few minutes and then
execute the following, with the username provided by the CLI, until you receive a success message:

5.

sfdx force:package:install:report -i 0Hf7E0000000oPcSAI -u test-moo175cih2zy@example.com

Now that the package is installed, let’s use the CLI to assign ourselves the Property Manager permission set, so6.

that we can view the app, without assigning this via the UI:

sfdx force:user:permset:assign -n Property_Manager -u EnterpriseTesting

And finally, open the org:7.

sfdx force:org:open -u EnterpriseTesting

Congratulations, you’ve just installed your first Salesforce application into a “customer” org. You can now see your
deployed solution (Figure 9.1).

Associate Contacts to Accounts

Because we’ve created an Enterprise Edition instance of Salesforce, we’re required to associate Contacts to Accounts.
The first thing to do is go to the App Launcher, search for “Account,” and then create one.

Following that, we can proceed to our newly-deployed Property Manager app! Create a Property, and associate it with a
Contact, using our new Account. From there, you’ll be able to interact with the app just as you were able to whilst we
were developing it.

Figure 9.1: Congratulations. You’ve built your first AppExchange app.

To explore the setup menu, click the cog in the upper-right and select “Setup.” In the search box, type “Apex Classes.

Open your classes to view your code. You’ll see that the code is hidden in this subscriber org. One of the many
advantages of managed packages being displayed here is the obfuscation of code, protecting the intellectual property
of our partners.

You can also visit the “Installed Packages” menu within Setup and where customers can view all of their installed
packages.

